\begin{tabbing} $\forall$${\it es}$:ES, $b$:$\mathbb{B}$, $x$:Id, $e$:\{$e$:E$\mid$ @loc($e$)($x$:$\mathbb{B}$)\} . \\[0ex](($x$ when $e$) = $b$) \\[0ex]$\Rightarrow$ (($x$ initially@loc($e$) = ($\neg_{b}$$b$) $\in$ $\mathbb{B}$) $\vee$ ($\exists$${\it e'}$:E. (${\it e'}$ $\leq$loc $e$ \& ($x$ when ${\it e'}$) = ($\neg_{b}$$b$) $\in$ $\mathbb{B}$))) \\[0ex]$\Rightarrow$ ($\exists$\=${\it e'}$:E\+ \\[0ex]((${\it e'}$ $<$loc $e$) \\[0ex]\& ($x$ when ${\it e'}$) = ($\neg_{b}$$b$) $\in$ $\mathbb{B}$ \\[0ex]\& ($x$ after ${\it e'}$) = $b$ \\[0ex]\& $\forall$${\it e''}$$\in$(${\it e'}$,$e$].($x$ when ${\it e''}$) = $b$ \\[0ex]\& $\forall$${\it e''}$$\in$[${\it e'}$,$e$).($x$ after ${\it e''}$) = $b$)) \- \end{tabbing}